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Abstract. The soldering of small, delicate electronic devices by means of a blade thermode (a small, thin,
rectangular |_|- or | Ll -shaped soldering iron) requiresthe lower side of the thermode to have a uniform temperature
distribution. Thisisnot easily obtained: during start-up the corners tend to be too hot, and too cold in the stationary
phase. In the present study the various aspects that determine the heat flow and the temperature distribution are
analysed, both for the dynamic and the stationary cases.

For atemperature-independent (linear) material, approximate solutions are obtained for the dynamic problem.
For the stationary problem, an exact solution is utilized that includes temperature-dependent (nonlinear) material.
Practical design rules based on these solutions are proposed. The analysis compares very well with a numerical
finite-element simulation.
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1. Introduction

The soldering of electronic devices, like integrated circuits (“chips’), on a print board is
known as miniature, subminiature, and micro-soldering. It is usually done by application of a
LI- or LLI-shaped piece of metal, called athermode. Thisthermode s electrically heated up to
about 300°C (this varies with the application), while it is positioned with its lower side onto
the pins or connectorsto be soldered. Consider, for clarity, the following U-shaped geometry
with endsindicated by A and D and cornersindicated by B and c:

A D

An electric potential differenceisapplied at the ends A and b. Thisinducesacurrent that heats
up the thermode according to Joule's law. The soldering takes place along side B-C. The basic
guestion motivating the present study is:

How to keep the temperature along the side B-C as uniform as possible, in order to avoid
damage of the electronic circuitsfrom excessive heating, while at the sametime preventing
incomplete soldering of the connectors by insufficient heating.

To answer this question we have to solve the combined problem of Ohmic heating and hesat
conduction. This problem is non-stationary since in each soldering cycle the usual procedure
involves:
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— acool thermode at the start,
— ahigh current during the initial heating to attain the operational temperature quickly,
— alow current during the final stage when this temperature level isto be maintained.

Experience has shown that it is difficult to obtain a uniform temperature profile. In the
high-current stage the corners B and ¢ are heated up much more than the other parts, leading
to temperatures of about 350°C, which is 50°C too high. In the low-current stage the corners
B and c cool off to a value of about 250°C, which is 50°C too low. This changeis due to a
changein the relative importance of heat generation as compared to heat conduction:

— during the high-current stage heat generation dominates, especialy at the inner corners
of B and ¢ where the electric field has a singularity,

— during the low-current stage conduction dominates, in which case the cool ends A and b
cause the temperatures at B and C to be lower.

To quantify these observations and to show what is the role of the parameters involved,
we will analyse a mathematical model of athermode, utilizing the symmetry and slenderness
of the geometry, and assuming ideally insulated boundaries. In the dynamic case we assume
linear physical relations (material propertiesindependent of the temperature). In the stationary
case, however, we will take advantage of afortuitous exact solution of the nonlinear problem
with temperature-dependent material.

The results relate the amount of excess heat due to the corner singularities in the initial
value problem and the stationary problem to the material and geometry parameters, leading
to possible rules for thermode design.

2. Themodel

Anindustrial thermode is typically made of molybdenum, a Hastelloy alloy, tungsten (wolf-
ram) or nichrome, which are all good electrical conductors (homogeneousand isotropic), with
the electric current density j and the electric field E satisfying Ohm'slaw j = oE (ref.[1, 2,
3, 4]). Further, o isthe electric conductivity, i.e. the inverse of the specific electric resistance
1/0. For the effectively stationary current flow, as we will have here, the conservation of
electric charge leads to a vanishing divergence of the electric current density, V - j = 0. The
electricfield E satisfiesV x E = 0, and therefore hasapotential ¢, with E = —V ¢, satisfying

V- (0V¢) = 0. 2.1)

By definition, the potential ¢ is defined up to an arbitrary constant. If required, any suitable
constant may be added.

The heat dissipated as a result of the work done by the field per unit time and volume is
given by Joul€e's law, and leads to the heat-source distribution

j-E=0|Vo[2 (2.2)
Since energy is conserved, the net rate of heat conduction and the rate of increase of internal
energy are balanced by the heat source, which yields (ref. [5, 6]) the equation

T
pc%—t = kV2T 4 0|V |2, (2.3)
where T is the temperature, k& the thermal conductivity, p the density and ¢ the specific heat
of the material.
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The thermal conductivity is mildly dependent on temperature. For molybdenum it varies
from k = 142W/mK at 21°Cto k = 120W/mK at 300°C (ref. [7, 8]), so we further assume
that k isa constant.

The electric conductivity o is a material parameter which is quite strongly dependent on
temperature. For example, for molybdenum it drops from o = 19 - 106 (Qm)~* at 21°C to
8.0 - 108 (2m)~! at 300°C. Nevertheless, to make progress we will assume a constant o,
independent of 7', in the dynamic (initial-value) problem. This, then, leads to the Laplace
equation for ¢

V24 = 0. (2.4)

For the stationary problem, it was shown by Young[4, 9] that analytical progressispossiblefor
the more general case of temperature-dependent o and k. Exact solutions, especially when k is
constant, may be obtained for metals, which in general satisfy the Weidemann-Franz-L orenz
law [10]

K(T) =aT. (2.5)

o(T)
Here, T is the absolute temperature, and the Lorenz number « varies slightly from metal to
metal [11]. (In addition, it may be noted that interesting questions with respect to uniqueness
of the solution arise for other types of material [12, 13].)

For aconstant k, it is very attractive, for reasons of accuracy, to introduce the relation

L
o(T)

For example, in the range 273K < T' < 1000K the o of molybdenum is very well described
by Equation (2.6) with 3 = 0.026 - 10-8 Om/K, and 71 = 89K. Since the analysis of Young
is only trivially atered if we alow for an origin shift of the temperature, we will use here
relation (2.6) for the stationary problem. At the same time, it is no longer necessary to let T
denote absol ute temperature.

Asfar asthe other parameters are concerned, the density p is practically constant, and the
specific heat ¢ varies dightly. Typically, for molybdenum we have ¢ = 250J/kgK at 21°C
and ¢ = 275J/kgK at 300°C. Therefore, henceforth it will also be taken constant.

We will simplify the geometry by using the inherent symmetry, so that we arrive at the
L-shaped region

QL ={(z,y) | (0<z<0a, 0<y<L,)U(0<z <Ly, 0<y <b)}, (2.7)

(Figure 1) with the cool end | and the hot end I1.

Betweenend| andend Il the potential differenceis%V, whileat theinsulated boundariesthe
component of E normal to the boundary vanishes. Assuming that conduction and convection
by the surrounding air and the soldering material is negligible, we observe that the normal
heat flux vanishes at insulated boundaries, similar to the electric field.

At end | the thermode will remain at the temperature of the environment (the thermode
holder) Ty, while at end I1 it assumesits maximum value. So we have aong the boundaries

¢ = 0, T =T aendl, (2.8)
¢ = 1V, 2T =0 atendll, (2.9
Vé-n =0, VT-n=20 at the insulated boundaries, (2.10)

= B(T — T). (2.6)
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Figure 1. Sketch of geometry Q7

where n isnormal to the boundary, and, of course, Ty > T1.

The typical thickness of athermode is d = 0.5mm, which is small compared with aleg
width of (the order of) 2mm and a length of 20mm. In view of Equations (2.10) we may
therefore assumethat both ¢ and T" are constant in a cross-wise direction, making the problem
geometrically two-dimensional.

Theleglengths L, and L, arein practice sufficiently larger than thewidthsa and b to justify
the assumption that the electric field and the temperature field are practically one-dimensional
near the ends | and I1, in correspondence with the boundary conditions (2.8-2.10).

Initialy, T istypically equal to room temperature, although in practice it may be somewhat
higher. We assume here

T =Ty uniformly at ¢ =0. (2.11)

Finally, Table 1 summarizes the common range of values of the physical quantities. This,
among other things, will be useful later to determine the typical order of magnitude of the
various dimensionless groups.

Table 1. Typical vaues of the problem parameters.

thickness d 0.5mm
length L., Ly 15-30mm
width a, b 1.5-2mm
temperature T 25 —300°C, (corners 250 — 350° C)
voltage V' 01-2V

molybdenum: tungsten: Hastelloy (typ.):
density p 10200 kg/m? 19300 kg/m? 9000 kg/m®
specific heat ¢ 275J/kgK 141 J/kgK 375J/kgK
thermal conductivity & 120 W/mK 142 W/mK BW/mK

electric conductivity ¢ 1- 107 (Qm)~? 8-10° (Qm)~* 7-10° (Qm)~?
Lorenz number o 26-1078(V/K)?2 31-1078(V/K)*> 5.1-1078(V/K)?
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Figure 2. Complex z = x + iy-plane mapped to the ¢ + iy-plane viathe w-plane.

3. Thee€lectric field for constant o

For constant o the electric field is not coupled to the temperature field, and may therefore be
found independently. Furthermore, aswe will seelater, this solution isnot only relevant to the
initial-value problem. The stationary solution with the temperature-dependent material (2.6)
will be seen to be expressible in terms of this constant-o field.

The solution for ¢ in Q,, with L, and L, finite, is difficult to derive. However, since L, /a
and L;/b are sufficiently larger than 1, the solution is practically indistinguishable from a
solutionin

Qoo ={(z,9) | (0<2<a,0<y<oo})U(0<z <00, 0<y <h)}, (3.1
with the following behaviour:

99

a——>constant for y > 00, 0< 2z <a,

Y (3.2)
09

%—wonstant for x - 00, 0<y<b.

Thisis becausethelines ¢ = constant (the equipotential lines) in the legs quickly arrange
themselves perpendicular to the boundaries, and thus allow the application of the condition
¢=0aendland¢ = 3V atendll.

Now the solution can be derived by means of arelatively simple application of conformal
mapping ([14, 15]), where we identify the physical (x, y)-plane with the complex z-planevia
z = z + iy. Using standard techniques (see Appendix A) we see that the following function,
which is analytic in the upper complex half plane,

G(w)—Zi—aartanh avh —w +%arctan Vb —w
o bva? + w vaZ+w

™

(3.3)
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defines the mapping
z = G(w) (34)

that maps the upper half of the w-planeto Q. in the z-plane (Figure 2)*. Further details about
its limiting behaviour, etc., may be found in Appendix A.

The final solution is obtained by positioning a point source of strength ¢ (still to be
determined) in w = 0, corresponding to a source (or sink, if we adopt a different sign
convention) of electricity in0 < z < a, y — oo. The complex potential of this sourcein the
w-planeis given by

F = ZLiog(w/b?) + o, (35)

where ¢ is a constant yet to be determined. This constant is necessary for the problem as it
has been posed, but has no direct physical relevance. (Finaly, it will appear that ¢o = ¢(0, 0).)
The complex potential F' = F'(z) isnow implicitly given by

2 =G (PP ) (3.6)
The physical potential ¢ is given by the real part of F':

where ¢, theimaginary part of F', isthe conjugate of ¢. Thelinesgivenby ¢(z,y) = constant
are called the equipotential lines. The applied potential is constant alongtheends| and 11, i.e.
these ends coincide with equipotential lines. Thelinesgiven by 4 (z,y) = constant are called
the flux lines, the flux between two flux lines being constant. Insulated boundaries always
coincide with flux lines. Thus we can choose Im(¢g) = 0, so that

=0 dong {z=00<y<oo}U{0<z<o0,y=0}

3.8
p=q dong {r=a,b<y<oo}U{a<z<oo,y=>b} 38)
while indeed ¢(0, 0) = ¢o. Furthermore, we can choose g and ¢ such that
¢=0 alon 0<z<a,y=L,},
g { } 3.9

¢=3V aong {z=1Ly, 0<y<b}

in the aforementioned approximate sense, for large enough L, /a and L, /b. Using the asymp-
totic results (A.4), we then obtain

v

Nl

T T, I 2<a a b b a b)
Zo 4 22 (Qactan s + 2~ arctan— + log4 — log( = + -
a+b - barcanb-l-aarcana-l— og og(b-l—a)

1%

= TLoja + Ly/b’

NIl

(3.10)

! Perhaps not elegant, we leave the physical dimensions of length in z and (length)? in w.
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Figure 3. Equipotential and flux linesfor a=1.0 mm, 5=2.0mm

L, 2/b b 1 a b 1 b
———(—arctan—-|—|ogZ——Iog(—-|——)——Iog—)
do = LV a T \a a 2 b a 2 a
i &+&—g<garctang+éarctang+lo 4 —lo (2+§)>
a b m \b b a a g gb a
L,/a
:%v—/. (3.12)
La/a-i-Lb/b

An example of the electric field thus obtained is depicted in the Figure 3. The corresponding
heat-source distribution is given by Figure4. For later use, we summarize the resulting
behaviour of ¢ in the various regions of interest:

¢=¢o—%y \
q 4a?  2b b
2_ (4
Vel = (") J
¢=¢o+%$ )
q 4b° 2a
_;(Iog — +?arctang) z — 00, 0< y < b, (3.13)
2 _ (1)?
Vel =(3) J
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1ty
ERN.

Figure 4. Contours of constant source strength for a=1.0 mm, 5=2.0 mm

2 a
¢ = do+ log =
T b .
T +iy=a+ib+re?,

q 1 1 1/3 3 2/3 2 1
g1 1 s 20 1 3.14
T (az + b2) (5mr)* cos(30 — 37) r — 0, %W <6 < 2m, 219
1 1\2/3 _
VP = (5 +35) (G )
2
mq r° Cc0S20
) ®o 4 a2 12 z+iy =ré?, (3.15)
V|2 = m%q? 2 T_>0,O§9§%ﬂ'. |
V= 2

These equations together define a conformal map from the physical (z, y)-plane to the elec-
trostatic field (¢, 4)-plane (Figure2). Since ¢ and ) both satisfy Laplace’s equation, and are
related by the Cauchy-Riemann equations

F,(z) = thy + i)y = _i¢y + ";[}ya (3.16)
we have
|F'(2)]” = |V, (3.17)

which is not only ¢! times the heat-source distribution, but also just the inverse of the
Jacobian of the mapping (z,y) — (¢, ), i.e.

|V¢|?dzdy = depcp. (3.18)
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Since practical evaluation will be needed later on, it may be useful to note that

¢* | cosh(u — logb?) — cosv
ab \| cosh(u — loga?) + cosv’

VP = (3.19)

where u + iv = mq1(F — ¢o) + logb?.

4. Theinitial-value problem

At the start of the soldering process the electric heat source dominates the effect of thermal
diffusion in most of the thermode. Hence, the source is only balanced by the energy storage
term pc%—f. This is because a smooth behaviour of |V¢| results (except for the vicinity of
the cold end 1) in a smooth temperature profile with a small diffusion term V27T'. This is
particularly true for the legs, where V¢ is constant. So, initially, we have four domains to
consider:

a) A region with a smoothly behaving V¢, not close to the cold end, where the temperature
increaseis directly coupled to the source, with only a secondary role for diffusion.

b) The cold end | where the temperature boundary condition T = T creates a steep temper-
ature gradient, giving a heat diffusion of equal importance as heat-up and sourceterms. It
is of practical interest to know after what time the diffusion of the low end-temperatures
reduces the temperature increase in the thermode.

c) At theinner corner (a, b) the source |V ¢|2 hasasingularity of the order O(r~%/3) (where
r is the distance to the corner) which creates locally an intense temperature rise, so that
diffusion and the other terms become equally important. Theinitial temperature overshoot
at the corner diffuses away after sometime. It is of practical interest to know if thistime
islessthan the total heat-up time.

d) At the outer corner (0,0) the source |V |2 has a behaviour of the type O(r?) which
corresponds to a vanishing heat source and, therefore, also in this case a diffusion term
which is of equal importance as the the other terms. So we may expect that at the very
beginning of the process, this corner is slightly colder than the rest of the thermode. Then,
the hot inner corner becomes effective and heats up the whole corner region, until thisis
again reduced by the cooling effect of the end.

a) THE MAIN DOMAIN

Thefact that the diffusion term in Equation (2.3) is of secondary importance suggestsanitera-
tive processto construct asol ution. Assuming avanishing zeroth order solution To(z, v, t) = 0,
we can construct formally higher-order approximations by:

oT,

pc ot = kvanfl + U|v¢|27 (4.1)

which, in view of the source being independent of time, readily results into the following
(formal) solution
o 1kt

_ N (P g2n-1) 2
Tyt) = To+ 7 3 7 (50) v 2(v9P) (4.2)

g
= To+ — |Vt +---.
pc
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In general, this result is only to be interpreted in some asymptotic sense for small time.
Obvioudly, it is neither valid for al ¢ nor for al x, since none of the boundary conditionsis
explicitly applied. Nevertheless, in a practical situation of heating up a thermode as quickly
as possible, we are at start-up usually in this “small-time” regime for the main part of the
thermode. Only near end | and the corners, solution (4.2) is not valid. Consider, for example,
end Il. Using (3.13) we have

A
T(Ly,0,t) = To + pc(b) t. (4.3)

This may be compared with an “exact” numerical solution of the present problem, (2.4) and
(2.3)in(2.7) with (2.8-2.10) and (2.11). This solution has been generated by the finite-element
package SEPRAN ([16]), asdescribedin Appendix C. In Figure 5 the temperature is shown at

soet Eq. (4.3) 7

(0)] N A7

288;- e =z \
T(Ly,0,t) — To ] 7 FEM

1@@:-

-

1 1 1

A |
9

0 9.5 1 1.5 (sec.)

Figure 5. Temperatureat x = L, andy = 0

x = Ly andy = Ofor athermodeof molybdenumwithV = 0.4V, L, = 20mm, L, = 10mm
and a = b = 2mm. The similarity between the analytical and numerical solutions is very
good.

Under the assumption that the influence of cold end | has not yet reached the end I, we
can use the above result to estimate the total heat-up time. It is found that the temperature 7',
is reached after the total heat-up time

theaup = = (S)Z(TOo ~To). (4.4)

For the above example, with T, — Top = 275°C, this gives 1.42s (numerically: 1.48s) for
molybdenum, 1.72 s for tungsten, and 24.4 s for Hastelloy.

Note that in leg | and leg |1 the source strengths are not equal, but have aratio of a?/b.
This meansthat when a and b differ in any substantial way, atemperature gradient acrossthe
corner region is built up, which, after some time, will be levelled off by a flow of heat from
one leg to the other. This effect will not be considered here.
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b) THE COLD END

Near theend | the heat sourceis constant: |V ¢|2 = (¢/a)? (Equation 3.12). Also, the boundary
and initial-value conditions are uniform: T'= Ty at y = L, and ¢ = 0. Thisimplies that the
solution is only afunction of i and ¢, so that Equation (2.3) reducesto

oT 0°T q\2
This equation may be solved by the similarity solution
_ T (q\2 )
C
n? = %(La —y)?
, 5 , , (4.6)
fn)=1+2n°) ef(n) + —=ne™™ —2n
) VT
n 2
erf(n) = —/ e dt
(m) 77 Jo J
The behaviour of f is graphically described by Figure6. For small time ¢ and large 7,
1_ ______________________________
fm) 4s1
Uel T T '8.'5' T T Iill 7T lj-.lsl T T l2l| T T l2.l5| T T I3

n—
Figure 6. Scaled transient temperature near edgey = L,

the shape function f ~ 1, so that the temperature behaves like in the “main domain” as
T = To + (0/pc)|VH[>t. When at a fixed position y the time ¢ increases, the similarity
variable n decreases. For ¢ so large that < O(1), f reduces to values smaller than 1,
diminishing the growth of 7". So, in this way the effect of the cold end | is felt at the corner
(y ~ 0) after adiffusion time

PC 12
> -, :
toold-end = 77 L 4.7)
For the above example, with L, = 20mm, this yields 2.34 s for molybdenum, 1.92s for
tungsten, and 26.0s for Hastelloy.

C) THE SINGULAR INNER CORNER (A,B).

It is seen from from Equation (3.14) that near the corner (a, b) the heat source is afunction of
r (the distance to the corner) only, and behaves like |V$|? = O(r?%/3). Also the boundary
conditions 0T'/09 = O a 0 = %w and 27 do not give rise to any dependence of T on
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Figure 7. Scaled temperature H () near inner corner a, b

0, the angular coordinate in the corner. Therefore, T is a function of r and ¢ only, so that
Equation (2.3) reduces to

oTr 0°T 10T of 1 1N2B 5 Lo
PCor = k(ﬁ + ;W) +o (; + b_2) (Smr) /= 4.8
This equation has the following similarity solution (see Appendix B)
B o o0 1 1\2/3, 9kt \2/3 )
H(n) =T(3)1F1(-5: L, —n?) —n*/® (4.9)
2
2 _ pcr
T J

where 1Fi(a; b; z) is the confluent hypergeometric function. A graphical description of the
shape function H (n) asafunction of n isgivenin Figure7. Asis shown in Appendix B, this
solution perfectly matchesto the far-field “ main-domain” behaviour for large r (large n). The
most important property of (4.9) isthe value at the corner:
9\280 ,,1  1\2/3/kt\2/3
— SY(Z)Y 2=+ = b
T(a‘abat) _TO+F(3)(87T) kq (az b2) (pC)

When we compare this value with the far field (the average value between leg | and leg 11, for
subjective reasons of symmetry), we may obtain an estimate for the time it takes before the
temperature overshoot at the corner is dissipated away. The ratio

(4.10)

T(a,b,t) —To _F(g)(9)2/3(i 1)—1/3(kt)—1/3

r(h+TIn) -1 2 \n a? B2 pc
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Figure 8. Temperature at corner (a,b) and at end 11

5 by —

) ' 0.7547 b

a

a

isnumerically smaller than 1 when ¢ is larger than the corner excess diffusion time
81r(2)°®
— (3) pe Z 4 - Lt

-1
82 k ab(b A )

For the above example, with ¢ = b = 2mm, this is 0.035s for molybdenum, 0.029s for
tungsten, and 0.39s for Hastelloy. Apparently, for the values selected here the temperature
overshoot does hot exist long enough for it to be of any importance.

All thisisvery well confirmed by the samefinite-element “ exact” solution discussed above
(molybdenum with V- = 0.4V, L, = 20mm, L, = 10mm and ¢ = b = 2mm; Appendix
C). In Figure 8 the temperature near the corner = a, y = b, (both the numerical and the
analytical one) is compared with the far field (at end I1). After about 0.04 secondsthe corner
temperature does not dominate any longer over the far-field temperature.

pc

ab(% + (4.12)

d) THE SMOOTH OUTER CORNER (0,0).

In away, thisis rather similar to the inner corner. Again, the source is a function of  only,
athough now a very smooth one: |V¢|? = O(r?), as given by Equation (3.15). Also, the
boundary conditions are such that 7" is a function of » and ¢ only, so that Equation(2.3)
reducesto

IT_ ko
p ot ror

Thisequationisalso of thetype solved in Appendix B; however, the confluent hypergeometric

function now simplifies greatly, since 1F1(—2;1;2) =1 — 2z + %zz, and we obtain

U7T2q 2

Z+ 022

)+ &

oT 2

el 412
" or ( )

on2g?

2 2
A(po)2(a2 + P2 (2Kkt* + per<t).

T(:anat) = TO +

(4.13)

Duetoitszero sourcestrength, the corner isonly heated by conduction fromits neighbourhood.
If the distance between the corners (0,0) and (a,b) is large enough, i.e. if n? = pc(a® +
b?) Bkt ey (See Equation 4.9) islarge enough, the corner (0, 0) is never heated by corner (a, b)
more than by the far fieldsT'(T) or T'(IT). In that case, the corner temperature that starts asa



72 SW. Rienstra

30
(OC): _ re 7
~
28+
T( y "y t) TO : 7
10:_
] corner (FEM)
a— T T T T T T T J| T T T = T
© ©.02 0.04 0.06 ©0.88 0.1 ©.12 0.14 (sec.)

Figure 9. Temperature at corner (0,0) and at end 11

quadratic function in time (Equation 4.13), will after sometime, the corner shortage diffusion
time tcs3, become comparable with the far field, and then gradually change into some linear-
type growth that follows the far field. As aresult, not only the temperature 7'(0, 0, ¢) itself,
but also its slope 9T'(0, 0, t) /0t will never exceed the far field counterparts. An estimate of
this corner-shortage diffusion time is therefore the time it takes before approximation (4.13)
and the far field have the same slope:

OT(0,0,+) _ 19(T(I) + T(II))
ot 2 ot

which resultsin

1 pc . sa b\3
fost = 5 5-ab(7 + ) . (4.14)

Thisis equal to or larger than ¢, as we have the ratio

tesd 4 a b\4 1 /a 0b\4
foed 81r(g)3(b +2) “1eels T )
which for a/b = 1isequal to 1.07, and larger otherwise.

These observations may be confirmed by comparison with the numerical FEM-solution,
introduced earlier (molybdenum with V- = 0.4V, L, = 20mm, L, = 1I0mmanda = b =
2mm). In Figure9 the analytical expression (4.13) for the temperature at the corner z = 0,
y = 0is compared with its numerical counterpart, and the “far-field” temperature at end I1.
We seeindeed that after about 0.04 sec. the corner temperature tends to follow the far field.

5. The stationary problem

In the previous section we dealt with thefirst question, i.e. how to keep the excesstemperature
in the corner below the end temperature. Now we will consider the second question of a
uniform temperature distribution in the stationary problem.

After the final temperature T, at end |1 has been reached, heating will be reduced to just
the amount necessary to maintain this temperature, i.e. the electric potential difference V'
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is turned down to a small value. After a short time the temperature will be stationary, and
Equation (2.3) reducesto

kV2T + o|V¢|? = 0. (5.1)

The second question concerning the uniformity of the temperature can now be answered by an
exact solution. As was explained above, there is even an exact solution for the more general
case of temperature-dependent conductivities. We will assume here a constant £ and a o
satisfying relation (2.6). The electric potential now satisfies Equation (2.1).

a) THE EXACT SOLUTION

Aswas observed by Young [4, 9], the parallel boundary conditionsto 7" and ¢ imply that T’
may be written as afunction of ¢ only: T = T(¢). After elimination of V2¢ and |V¢|? we
obtain the equation

Ex2dPT  1,d7\2d (k2 k&
G) e tale) @) +5 =0 (52)
Since ¢ increases monotonically from end | to end 11, the boundary conditions in terms of ¢
are now

T(0) = To, T'(3V) =0. (5.3

Sincek/o = kB(T — T1), we can solve this equation as follows:

T(¢) = To+\/(To — T0)? — (4% — §V) /kB. (5.4)

For linear material (¢ = o constant) this would be
T(¢) = To+ 57 (6V — ). (55)

and we would have completed our task, because we aready havethe electric field ¢, asfound
in section 3. For the nonlinear case our task will be slightly more involved, but, asit happens,
wecan still usethislinear field. Note that the above rel ations between temperature and el ectric
field arevalid for any geometry, with insulated boundaries and two sides with agiven constant
potential and temperature. Thelinear result was givenin Carslaw and Jaeger (ref. [6, ch. 4.10])
for the one-dimensional problem of athin wire heated by an electric current.

Let usintroduce the auxiliary potential & which satisfies

\/qu> = o(T)V¢.

Thefunctions T" and ¢ can be expressed in terms of ¢

¢ = 3V +VEB(To— T1) Sn® — 3V cos?,
Vo
T = Ty + (Tog—T1) cosd + =—=sind.

Vkp
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while & satisfies Laplace's equation with boundary conditions

=0 atendl, (5.6)
14
—_—e atendll, 5.7
VEB(To — T1) ) &

Vd-n=0 at the insulated boundaries. (5.8)
In other words, @ isequal to ¢ with constant o (Section 3), but with <I>%V instead of %V. The
constant (), corresponding to ¢ of Equation (3.10), now becomes
1

d = @y, = arctan(

1 =
~ ___actan( —2— 59
C T+ Lo arcan(\/_kﬁ(To—Tl))’ (9)
and the constant ®(, corresponding to ¢o of Equation (3.11), becomes
L,/a iy
Po~ — __arctan( —2——). 5.10
0= Tda + Ly/b arcan(s/_kﬁ(To —Tl)) (5.10)

A graphical description of apossible temperature field is given in the Figure 10.
Now we are able to compare the temperature at the center of the lower bar (end point 1)
with the outer corner (0,0). These points correspond with & = & 1y (¢ = %V) and & = g

(¢ = o), respectively. So, under the usual approximation of large L, /a and L; /b, we obtain
theratio

T(0,0) T(@®=) NI+t \/(To —T1)2 + 3V2/kp cos(A®1y)
T(L,0)  T(2=2yy) Ty + \/(To —T1)? + ZV2/kp

where

: (5.11)

_ Ly/b
N Ly,/a+ Lb/b.
This temperature ratio (5.11) along leg Il is never equal to unity. However, we can make the
difference with 1 as small as we wish by selecting a geometry such that X is small enough.
As might be expected, this conclusion would be entirely the same if we would consider a
linear material. When the temperature along leg |1 becomes constant, the material properties
become constant as well.

b) THE TOTAL LINEAR AND NONLINEAR SOURCE STRENGTHS

An interesting result for comparing the linear approximation and the full nonlinear model,
e.g. for selecting a representative value of oy, is the ratio between the total source strengths

[ [ o|V$[? dudy.
Q

LWe may evaluate this integral analytically, both in the linear and the nonlinear cases, by
using the fact that | V¢|2 and |V ®|? are the inverses of the Jacobian of the transformations of
(z,y) to (¢p,4) and (P, ¥), respectively (¥ isthe conjugate of ®). So we find

({fU(T)|V¢|2dxdy k({f(T—Tl)|V<I>|2dxdy

[ [ o0l V¢|? dzdy oo/ | [V$[? ddy
QL QL
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Figure 10. Contours of constant temperature for a=1.0mm, b=2.0mm, L,=L;=4.0mm

Dy,
kQ [ (T—T1)dd
_ 0

_ 3VEQ/VEB _ o(To) P3v

%Vaoq %Vooq oo tan Q%V

(5.12)

(Note that @ 1y /tan® 1y < 1.) So the value for o9, such that the integrated source strengths
in both the linear and the nonlinear models are the same, is equal to

Oy
tan CI)%V

oo = o(Tp)

6. Conclusions

The nonuniform heating problem of a |I-shaped thermode may be split up into the following
parts. During the initial dynamic phase the material heats up in close agreement with the
(nonuniform) source distribution. This leadsto auniform temperature in the straight parts, an
overshoot near the inner corners where the electric field is singular, and alower temperature
near the outer corners where the electric field vanishes. This distribution, together with the
cold boundary condition at the cool ends, induces alocal heat flux which does not balancethe
source, so the temperature will movein timeto its stationary equilibrium. The timesinvolved
in this redistribution may be used to select the problem parameters such that the undesired
overshoot is controlled:
the corner excess diffusion time

8II'(2)3pc ,sa  by\-1 pc . ra  by-1
teed = Peab(2 +2Y " —075a7%8ap (2 + 2
cd = g2 ka(b+a) ka(b+a)
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should be smaller than the total heat-up time

theat-up = %(S)Z(Tw —To)

or larger than the cold-end diffusion time

teold-end = %Lﬁ
for the corner overshoot to be negligible.

The other part of the nonuniform heating problem is the stationary problem. The cold ends
cool off the thermodein such away that the corners may becometoo cold. On the other hand,
the same corners induce a locally intense electric field that may compensate for this effect,
so as to keep the corners and the rest of the bar meant for soldering at an almost uniform
temperature. We obtain this aimost uniform temperature by selecting the geometry such that

Ly/b

m is small enough.

APPENDIX A. CONFORMAL MAPPING OF POLYGONAL BOUNDARIES

Accordingto the Schwarz-Christoffel theorem ([14, 15]), apolygonal boundary in the complex
z-plane with interior angles v, v, 3, ... IS mapped onto the real axis Im(w) = 0 of the
complex w-plane by the transformation z = z(w), given by

dw

P K(w —pl)l_”l/7r (w —pg)l_”Z/7r (w —;03)1_”3/7r (A.D)

where K isaconstant and p1, p2, p3, ... arethereal values of w corresponding to the vertices
of the polygon. The region in the w-plane corresponding to the polygonal interior is the
half-plane Im(w) > 0. Theinterior angle of a vertex at infinity is zero. One such point may
be mapped to infinity in the w-plane, with K tending to zero at the same time, such, that the
factor K (w — wy) is effectively constant.

In the present problem for Q. the following equation is selected

dw _ miwVi?—w (A.2)
dz b Va?+w '
with solution z = G(w) given by
2ia aVvb? —w 2ib b2 —w
G = — atanh| ———) + — arctan | —— A.3
S (wm) : (m) A3

_aiIO Va2 +w+ avbh? —w bIO ivaZ+w+ Vb2 —w
B Va2 +w — aVb? —w iva2 +w— Vb2 —w
The interior angles to be dealt with are 0 and 0 in the legs at infinity, %w at (0,0), and %w
at (a,b). The infinite vertex y — oo, 0 < z < a is mapped to w = O, the infinite vertex

z — 00, 0 <y <btow — oo. Thereal values corresponding to the other vertices are most
conveniently taken to be b2 and —a?, so that

Gb?)=0 and G(—a?) =a+ib

™ ™
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14

—~

where the limit Im(w) | O is understood. The definitions for log, square root, arctan, and
artanh are the principal values, with

i+ 1 1+zx

. tanh(z) = = | .
i—2x’ artanh(z) ZOgl—x

The combined branch cuts of the square roots and the logarithms cause G to have branch cuts
aong (—oo, 0] and [b?, o). The boundary 692 is mapped to the real w-axis as follows:

Figure 11. Wedge-shaped region

arctan(z) = IE log

zt>a, y=b for —oo<w< —a?

r=a, y>b for —a2§w§0,
r=0 y>0 for 0<w < b
x>0, y=0 for b <w< oco.

The behaviour of G near the vertices is given by the asymptotic expressions

b w 4ab 2a a )
G(’LU)E; IOgE-l-IOgaz—_l-bz-l-—arCtan— (U)—>OO,!L"—>OO)

b b
ia ab dab 2b b
G(w):g<loga+logm+;arctana> (w = 0;y — o00)
. (A.4)
G(w):ﬁ—;)\/az—i—bz\/bz—w (w — b% 2,y — 0,0)

2ib (a® 4 w)3/?
3ra? /a2 + b2

G(w) ~a+ib + (w = —a? 2,y — a,b)

APPENDIX B. THE GENERAL INITIAL-VALUE PROBLEM IN A CORNER

Consider the constant-o, wedge-shaped two-dimensional region 0 < # < v with an electric
field with complex potential F(z) ~ 2™/¥, so that the potential of the field is

bz, y) = (v/7)Ar™" cos(6r /v) (B.1)
The temperature distribution T' due to the heat generated by this field is then given by

pc%—f = kV2T + o A%p?7/v—2 (B.2)
with boundary conditions

oT

S5 =0 @ 0=00=v (B.3)

and initial conditions
T(z,y,t)=0 a t=0. (B.4)
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Since there are no other (point) sourcesin » = 0, we have the additional condition of afinite
field at the origin:

0 < T(0,0,t) < . (B.5)

Boundary conditions and the symmetric source imply that 7" is afunction of ¢ and the radial
coordinate r only, so that equation (B.2) reducesto

B_T — k(az_T + }a_T
Pt — "\ o2 T o
Dimensional analysisreveal sthat, owing to the homogeneousinitial and boundary conditions,
the infinite geometry, and the source being a monomial in r, homogeneous of the order

21 /v — 2, thereis no length scale in the problem other than (kt/pc)Y/2. Thisindicates that a
similarity solution is possible. It appears that

) + o A%/, (B.6)

_ O (At _ per’
T(rt) = 24 (pc) hXx), X =10 (B.7)
reduces Equation (B.6) to
Xh" + 1+ X)W — (x/v)h = =X"/"71, (B.8)

This equation may be recognized as an inhomogeneous confluent hypergeometric equation in
— X, which hasthe general solution

WX) = C1Fy (-7 /v;1;—X) + DU(=7/v,1, —X) — (v/7)2X ™V (B.9)

where 1F}(a; b; z) and U(a, b, z) are the regular and singular confluent hypergeometric func-
tions (ref. [17, 18, 19]), which are solutions of Kummer’s equation

2" 4+ (b—2)y' —ay =0. (B.10)
Since U issingular at the origin:
U(-n/v,1,-X) ~ —log(X)/T(-n/v) (X —0) (B.11)

thisterm hasto vanish, and the integration constant D isequal to 0.
The function 1F1(a; b; 2) is defined by

o az  ala+1)2? (a)pz™
where (a),, is Pochhammer’s symbol, defined by
(a)o =1,
I'(a+n) (B.13)

(@)p=0ala+1)(a+2)---(a+n—-1) = I a)

Note that for a equal to a negative integer, this series is finite and 1Fi(a;b; 2) is just a
polynomial of order —a.
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Figure 12. Mesh in the finite element calculation

1F1(—n/v; 1, — X) hasthe asymptotic expansion

Bl —n/v n 2 _
1Fi(—n/v;1,-X) = F(l—:-w/u) Z ( él) ) Xr/vn
n=0 )

+0O(X 1) (X — o0) (B.14)
so that the initial-value condition implies that the other integration constant is equal to
C = (v/m)I'(n/v).

Putting everything together, we have the solution

e = S oo (S - ()
242 [ Akt\7/ 2 (B.15)
ov /v T T or i
- Ml( pc) F(l—i_;)lFl(_;;l;—ZW)—Tz/].

Note that, as expected, the behaviour for » — oo ceasesto depend on V2T and isjust alinear
growth in time;

T(z,y,t) ~ %Azr%/“_zt (r = o0) (B.16)

Finally, a remark may be in order about the effect of a finite radius of curvature of the
corner that might occur in practice. In such a situation the present solution is not valid for
very small time. Thisis seen asfollows.

The present similarity solution is available because of the absence of any length scale
in the problem. Therefore, the temperature has to depend on the inherent length scale £ =
(4kt/pc)*/?. 1f we had a corner with a small but finite radius of, say, o, then a length scale
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is introduced via the boundary condition 97/0r = 0 a r = ro, which, strictly speaking,
renders the present solution invalid. Indeed, for very short times, when ¢ < O(rg), we need
another solution. However, for larger times, the details of the corner become “invisible”, and
the present solution is valid.

APPENDIX C. FINITE-ELEMENT SOLUTION

By means of the finite-element package SEPRAN ([16]) a numerical solution of the present
problem, (2.4) and (2.3) in (2.7) with (2.8-2.10) and (2.11), for a thermode of molybdenum
withV = 0.4V, L, = 20mm, L, = 10mm and « = b = 2mm, has been generated. The
mesh used ultimately is given in Figure12. By halving the mesh size from (typically) % mm
to %1 mm and using an automatic time-step integrator with a relative accuracy of 103, we
estimated the typical relative accuracy of the solution to be less than O(2 - 1073).
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